PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 1998

Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum
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In order to investigate ponderomotive force in the relativistic regime, the interaction of ultraintense laser
pulses with free electrons in vacuum is studied both theoretically and numerically. Various expressions for the
electromagnetic field of the laser in the case of a Gaussian transverse profile are given, which take into account
corrections to the monochromatic paraxial approximation, and the effects of finite pulse duration. A detailed
demonstration of relativistic ponderomotive ford@PBH is established which makes apparent the domain of
validity of this concept. Computer simulations are carried out using a three-dimensional test-particle code.
They show the importance of the correct description of the fields, and confirm the domain of validity of the
RPF which is +-v,/c>1/kwy, wherev, is the component of the electron velocity parallel to the laser
propagation directionc is the velocity of light,k is the laser wave vector, amd, the beam waist at focus.
Outside of this domain, the electron motion is more complicated, with a high sensitivity on the initial distance
from the laser propagation axis and a relatively low energy &h063-651X98)02409-X]

PACS numbgs): 52.65.Cc, 42.50.Vk, 41.26.q, 52.60+h

I. INTRODUCTION [9]. This so called high-intensity ponderomotive scattering is
expected to occur when the electron quiver amplitude
With the development of ultraintense lasgt$ it is now  reaches the beam waist at focus. Refereft@s 12 recently
usual to create electromagnetic fields where the quiver vereported an experiment designed on the basis of this second
locity of an electron approachesat focus. In these condi- description, which also concluded that the electron is ex-
tions, the question has arisen of the validity of the concept opelled from the focus in the plane of polarization of the
ponderomotive force. At low laser intensities, it is well wave.
known[2,3] that the averaged motion of an electron in the |t must be noted, however, that as this effect is most im-
focus of a laser can be described as a slow drift toward thgortant in regions of high field gradient, i.e., at focus, some
regions of low field intensity. The corresponding averageccare has to be taken in the description of the electromagnetic

equation of motion for the electron is written field. It is well known indeed that the usual scalar description
of the field as a Gaussian mofi&3] used in Refs[9] and
dp e2 [10] is only a lowest order approximation for the fields. Lon-
T 2V|E|2, (1) gitudinal components of the field appear at the next order
2Mw [14-17 which play an important role in the correct descrip-
tion of the classical ponderomotive forf&8].
wherep is the electron momenture,the elementary charge, This paper is aimed at clarifying the discrepancy between

m the electron massy the laser frequency, arid the elec- these two relativistic generalizations of the ponderomotive
tric field of the laser wave, and where the overbar denotes amotion. As the paraxial approximation is known to be insuf-
average over the laser period. This nonrelativistic regimdicient, we first derive the exact expressions of all the com-
corresponds to the case<1, wherea=eE/mcw is the nor-  ponents of the electromagnetic field around the focus for the
malized amplitude of the electromagnetic field of the laser. usual case of a Gaussian transverse profile. These compo-
In the relativistic regime §=1), various studies have nents are correct to all orders with respect to the paraxial
been reported. On the one hand, a new definition of the porapproximation. For very short pulses, other corrections due
deromotive potential has been giveh-8| through a fully  to the fact that the light is no longer strictly monochromatic
relativistic calculation. It concludes that the main features othave to be taken into account. We also derive the first order
the nonrelativistic case still apply: the averaged electron moeorrection arising from this effect. We then derive the RPF
tion is independent of the laser polarization, and the elect6,7] in the special case of propagation in vacuum, insisting
trons are expelled from the high-intensity regions. This rela-on the theoretical conditions of validity of this calculation.
tivistic ponderomotive forceRPP is a valid description We compare our result with similar ones found in the litera-
provided that the wave amplitude varies slowly with respecture [4,5,8]. We present a 3D test-particle simulation pro-
to the wave phase, so that a multiple scale analysis of thgram designed to check the validity of this concept numeri-
particle motion can be performed. On the other hand, twoeally. We use this code to study the same case as Hartemann
dimensional(2D) computer simulations have been made inet al. [9], and show that their 2D model is clearly insuffi-
the relativistic regime for a linearly polarized wave, which cient. Similarly, we demonstrate the incompleteness of the
conclude that at very high intensity the laser-electron intersimulations supporting the experiment of REf0] and the
action is terminated within a wavelength, and the electron isvalidity of the RPF in this regime of parametdrkl]. We
scattered away from focus with a very high escape energgonclude with the necessity of additional experiments.
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II. ELECTROMAGNETIC FIELD NEAR FOCUS

~ 1 _
- —iko(px+ay)
Here we are interested in a correct description of the fo- Ex(p.a) )\SJ f Ex(x.y,00e 70 dx dy

calized electromagnetic field of a laser. We will recall vari-
ous works that have already been done on the subject, show
how they can be unified to give a coherent and complete
description of the electromagnetic field around focus in
vacuum for a Gaussian laser profile, and derive a convenient
way to take into account the effects due to the short duratio
of the pulse. In the rest of this paper, the laser field propa-
gates in thez direction.

2+q%)/4€%], @

_ Bo
4 é?

here\o=2mcl/wy is the laser wavelength in vacuurkg
=wg/c is the corresponding wave vector, aag 1/kowy is
a small quantity. It is then easy to show that can be
computed at any point in space using

A. Angular spectrum representation of plane waves

The angular spectrum representation of plane waves is a Ex(x.y,2)= f f Ex(p.a)exdiko(px+qy+mz)]dp dg
powerful method to obtain an exact expression for the fields 3
of a focalized laser wavgl6,18—22. In this formalism, two
transverse components of the field have to be given in thwhere
focal plane, and then all components can be deduced at any 5 o1 w2 2
point in space. We will first consider a monochromatad | A=p*=0q%) if p°+g°<1
thus infinitely long pulse, with frequencyw,. For conve- |i(p?+g?—1)Y2 if p?+g?>1.
nience, in the expression of the fields we suppresgtheo
time dependence. We take as a starting component the traris; is usually taken as a second known comporié#dt 18§,
verse electric field, which we suppose to be polarized in thevith E,=0 at focus, so thaE,=0 exactly and everywhere
x direction and with a Gaussian profile with beam waist atin space. The other components of the fields can then be
focus wy, Ey(X,y,z=0)=Eqexd—(*+y?)m3]. We can calculated using the Maxwell equations. For instafiges

4

write its transverse Fourier transform as given by V-E=0, so that
exp[iko(prr gy+m2z]
(xyZ)—k afo o dp dag )

However[17], the fields lack symmetry in tha,=0 but whereb=\pZ+q? andr=x>+yZ. If we eventually rein-
B,#0. To obtain a physically more reasonable symmetricroduce the temporal dependence and the terms coming from
expression of the fields, we only need to repeat the samB, , and if we take the real part of the expressions, we obtain
analysis, starting fron, instead ofE,. We take forB,(z  the following equations for the fields:

=0) the same Gaussian profile as flag(z=0), and we

suppose thaB,=0. We then deduce all fields everywhere in Eo x2—y2 y2
space. The final expression of the fields is simply half the EX:—2 I+ —3I2+ —2I3 , (79
sum of the two results. All six components are then different de Kor r
from zero. In order to simplify some demonstrations in this
section, we will work in some cases with tt@mples} non- Eo
symmetrized expression of the fields that we will distinguish yT 462 kot (k0” 3= 2l2), (7b)
from the symmetrized ones with a h&t; is the nonsymme-
trized value of theE, field.
To continue the derivation, we notice that the valuerof E =E f| (70)
in Eq. (4) when p?+g?>1 gives evanescent waves which 2
can be neglected to a very good approximation as a conse-
quence of Eq(2) and of the small values of considered E
throughout this papefttypically, e<3.2x10 ?). Thus, the sz—y, (7d)
integral in Eq.(3) is restricted tgp?+ %< 1. The remaining ¢
part of the integrals is calculated in cylindrical coordinates, e / ) )
which gives for the case df,: __Fo y' =X X
g X By—4C€2\ I+ e lo+ =13, (79
£ _ Bo [T v2ue kg io0?
E.(X,y,2)= _2j e e'fo?Y Jo(korb)b db, Eo Y
2e°Jo B,= =1y, (71)

6) 4ee? T
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where and[18]. One then obtains all the coefficients of this expan-
1 sion. For simplicity, here we will show the derivation i
|1:f e P4 (1 4+ \1—Db2)sin( ¢y) Jo(kerb)b db, (i.e., without considering the terms coming frdsy, which
0 can be calculated exactly in the same yayhe method

83 consists in developing the tergfo?'1~"" in Eq. (6) as

p2/ae2 Sl in( ¢b) °°
1= [ e v 2 (bbb, (8D S L
0 J1-p7" el = 3 17| (ko™ ihii(kod),  (10)
p2ac2SI n((ﬁb) where
|3=J e P ———=J,(korb)bdb, (80)
’ L-b’ 1 L(n+m)! m
1 . )= S S (- i 3
|4=f e b4 14 )cos{qsb)al(korb)bzdb,
0 Vvl-b forn=0, h®Y(v)=ih{"(v) (12)
(8d)
and whereg, = wot—koz\/ﬁ"“r bo, With ¢, an arbitrary is the nth-prder_spherical_ Bessel function of the third kind.
constant. The remaining integrals ib are then calculated by
These are exact expressions for the fields in the case of a L
monochromatic pulse, which means that they satisfy the J E_Ze_b2/4€2b2n+1J0(korb)db
Maxwell equations exactly. As a consequence of this fact, 0

each component in Eqé7) is an exact solution to the scalar

wave equation in vacuum: ~ fxe*Ze*bZ/“fzbZ“”Jo(korb)db
0
A 1 672 ‘If 0. 9 2,02 2
— C_ E 9 —22n+1y 2ng—r /WOLn(rZ/WO), (12

These components can be taken as a starting point for tthere Ln(u) is the nth-order Laguerre polynomial. After
expansion of the fields in powers ef as shown in Refg16] inversion of the two sums, the final expressiongfreads:

iz) (M+1) r2
z) Ln+n+1 P ) (13

1+ i 2”‘2

m=0

E. = Eoeikoze— rzlwg
X

where zR=k0w(2)/2 is the Rayleigh length. The zero order Here we give the expression for the real parts of the fields up
term in this last equation is simply the paraxial solution forto first order, as will be needed in the following:
the fields, that is the solution to the paraxial wave equation:

2
W r<\ .
Ex= EoWexp( - —2) sin( ), (169
A+ 2|k E 0. (149 w
. - . . XWo r?
All fields have similar expressions, with even powers ébr E,=2Eye—-exp — — | coq ¢<Gl>), (16b)
the transverse ones, and odd powers for the longitudinal one: w? w?
E,=EQ+eE@+. .-, (153 E
e By=—" (169
Ey=€’E)+ -, (15b)
1) 4 33 = Y¥o i &
E,=eEV+&EX + - - -, (150 BZ—ZEoeVeX Y cos ¢g”), (160
By=€e?BP+ - -, (150 E,=B,=0, (169
By: B§/0) + 628512) +ee ’ (15@ Where ¢G: a)ot - koz+ tan_l(Z/ZR) - ZI‘2/ZRW2— ¢0, 8)

WD @ = ¢pg+tan Y(2/zr), W=wqy\/1+7%/73 is the beam waist at
B,=eB, '+ €B, 7+ -. (15f)  |ongitudinal positiorz, and ¢, is an arbitrary constant. Note
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that the symmetrization has no effect on these terms. It modicorrection toE, to first order ine will occur as soon as

fies terms of order greater than or equal to 2. |2€29(Inf)ld¢|=e. In terms of the pulse duratiodr, this
As a first approximation, the fields of a laser pulse can b&ondition can be written

obtained by multiplying expressiorig) or (16) by an enve-

lope factorf(z—ct). However, ultraintense pulses are also

short, and therefore not exactly monochromatic. We will CAT=4ezg=2W,. (20

now focus on the corrections arising from this effect.

o _ For awy=10 um pulse, this is equivalent th7=<60 fs. This
B. Finite pulse duration effects is easily obtained in typical ultrashort lasers, which moti-
Let us first compute an estimate of the pulse duration foiates us in considering this finite pulse size effect.

which these finite pulse duration corrections may be needed. We will proceed by another order by order derivation, but
We will go back to the wave equatiof®) for fields in  with the small parameter=\,/cA7<1. We go back to the
vacuum. This can be solved order by orderifil4], which ~ angular spectrum method, that we generalize as in[R&f,
for the fields gives an expansion similar to E45). We  thatis, we write
express the electric field as

Ex(X,y,z=01)=Eo(x,y) f(D)exp(—iwgt),  (21)
E=E(r)e*(Z=f(z—ct), 17
wheref is again the pulse envelope of width 7, andk, the wheref(t) is as above the temporal envelope of the pulse,

_ (2102 ; ; .
average wave vector of the pulse. Inserting this expression if\nd EO(X'Y) - Eoexp[. (x 4.-y )/vvé]. The time Fourier trans
Eq. (9) results in orm of this expression yields

JE  of 9E ~
fAE+2|kf—Z+2£E=O. (18 Ex(X,¥,2=0,0)=Ey(X,y)f(0— ), (22

We now change of variables fronx.y,z) to (é=x/wg,7n
=ylwg,{=12/l), wherel =kOW§, and focus on the perpen-

dicular componenfgthe component perpendicular to the main
direction of propagation)

(92+<92 a+ &2+2 19f o
2i — e— - — —
&% an? al  9r? fag g

wheref () is the Fourier transform off(t). We can use the
angular spectrum method for each frequergyand wave
vectork= w/c) in the pulse, and write

- ~ 1 .
El:o’ Ex(p!q!w):f(w_wO)FJ f EO(X!y)e_Ik(pX+QY)dX dy,
(19) (23)

where as above=1/kgwy. The last term in this equation
describes the effects of the finite pulse duration. Therefore, whereX =27c/w. Then

Ex(x,y,z,t)zf dw e*‘”tf fdp dq E(p,q,w)ekPx+ayrm2, (24

One then remarks tha,(p,q,w) is simply the expression of Eq2) multiplied by the envelope in frequ_en&;(w—wo),
which can be removed from the integral in, ). This last integral can be expressed as in(&8) in the forme'*?&(x,y,z, w),
so that

Ex(x,y,z,t)zf do e "e*?e(x,y,z,0)f(w—wy). (25)

The important property of here is that it is a slowly varying function @f with respect to the ™' term. As the pulses we

consider are short but still contain many cyclB&y — w,) is sharply peaked aroung,. These two facts allow us to evaluate
Eq. (25) using the standard expansion technique

. ~ o0& . ~
Ex(x,y,z,t)=5(x,y,z,wo)J dw e df (g —wg) + a—w(x,y,z,wo)f dw e 74— wo)f(w—w)+ - - -

. o€ . _
=E&(X,Y,Z,w0) e 0Z Vf(t—z/c)+ %(x,y,z,wo)e'ko(z“")lf "(t—zlc)+---. (26)
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The successive derivatives bfare proportional to the suc- whereq is the charge andh the mass of the particle.
cessive powers ofr, so that we have obtained the infinite  In the laser frame coordinates, with the new variables
expansion we wanted. Note that the first term correspondé&z, 7=t—2z/c), these equations can be written as:
exactly to our expressiof¥), which justifiesa posteriorithat A
this is a zero order expression én In the same way, if one vz\ d _ q
develops to first order ine in this first term, one recovers ( T o TV V| (PTaA)=(VaA) v E(V' E)ez’
expression16). Eventually, we can obtain the fields to first (313
order in both parametegsand o (neglecting the terms iao

(1 v, d

as second ordeby developinge to first order ine in the first
term and to zero order in the second. This leaves the expres- clor tv-v
sions ofE, andB, unchanged, but adds a new termEpand
By which writes, for an envelopef (z—ct)=cos[n(t A last manipulation will give us our starting equations. We

= A 31b)
YMC'=—qv: ——. (31b

—Zc)2A 7] reduce the first equation to its two components perpendicular
to the direction of propagation of the pulse, and as a second
B Eo z[wp\® r2 equation we take the axial component of E2{Llg minus Eq.
Ex(l)‘?"i W a p (31b), divided by the speed of light:
— 2 2 _ vz 0
XV(1-w?*+ (Zze)"cog m(t—2/c)/2Ar] {(1— 2|5V (P +aA)=(V.0A)-v, (323
vy d dA
By(1)=Ex)/c, (28 [(1—?1 S2 V-V (pz+aA,— ymo) =qv —.
where u=r2/w§, ¢gu)=de+2tan Y(z/zg)— ¢, and ¢ is (32b)

the phase of +u+iz/zg.

We will finally remark that this method can be applied as
well to calculate the vector potential in the Coulomb gauge
Indeed, A is then given by the wave equatid8) and the
gauge conditionV-A=0, which is formally equivalent to
the Maxwell-Poisson equatiotV-E=0. Therefore, Egs.
(169, (16b), and (27) also give an expression f@k in the
Coulomb gauge up to first order inand o

We then perform an order by order expansion based on
the small parametersando. In the vicinity of the focus, the
expression of the vector potential shows us that the various
derivatives scale a¥ , ~1Mwg~e/\g, dldz~1izg~ €I\,
andd/cdr=dlcdry+ dlcdry, whered/cdr is related to the
fast oscillations at the laser frequency and scales ag, 1/
while d/cdr, is related to the temporal envelope of the pulse
and scales as dA 7~ o/\ . As both parameters ando are
required to evaluate the derivatives, an order by order deri-
vation of the ponderomotive force will b& priori possible
provided that o~¢€, which for a Ag=1um and wy

We now give the expression for the ponderomotive force=10#m pulse impliesA7~200fs. In the same way, we
in the relativistic regime and in vacuum. This demonstrationwrite all quantitiesf asf=f+ f, wheref is the rapidly vary-

Ill. DERIVATION OF THE RELATIVISTIC
PONDEROMOTIVE FORCE

closely follows former works by Mora and Antonsé®,7],  ing part off andf the slowly varying part with respect to the
who established its expression and validity in the case of gser frequency.
laser propagating in a tenuous plasma. Let us first remark that the term-1v,/c appears in both

We use the vector potential in the Coulomb gaugeequations. We will suppose it to be a zero order quantity in
(V-A=0) to describe the laser pulse. As we are in vacuumihe rest of the calculation, that is-v,/c> e~ o. This is an
the scalar potential is identically equal to zero. As shown akssential requirement for this derivation to be valid. The zero
the end of Sec. I, we can write order part of Eq(32b) reads

A=A +A)e+AR e, (29 a
’ —-—(p;~ymc)=0, (33

. . . . - To

where the tilde denotes a quantity that is rapidly varyirgy,

at the laser frequengyand where the superscripts are for the\yhere we note the zero order quantities with no indices. We

expansion acc_ordmg tez_l/kowo, while the sub_scrlpts refer .an then conclude that the quantjly— ymc varies slowly

to the expansion according ®=\Ay/cA7. To simplify the  \ith respect to the wave frequency, so that

notatlpns, we W_r|teA(l()o)—Al in th(_e rest of this paper. The_ p,— ymc=p,— ymc. In the same way, the lowest order part

equation of motion and the equation of energy conservatiogf gq. (329 reads

for relativistic particles are written

]
d —(p.+qA,)=0. 34
Gi(PTaA)=(VaA)-v, (309 &To(pi qA.) (34)
This allows us to write
2 - A 30 _
m)’m —_CIV~E, ( ) pizal—f—pi' (35)
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where The derivation of Eq(41) with respect tor; yields
p.=—0gA (36) 19 g—  —9—_ 19 —
S 3 ar A= ymeg —yme=p, o p,—5 e [
is the zero-order oscillation momentum of the electron in the ! (44)

laser field. We then consider the first order part of 82a
in both parameters and o. After multiplication by ymc, it

reads Multiplying Eq. (42) by p, , and Eq.(41) by p, -V, , com-

bining the two results and using E@L3), we obtain

— — 0
—p.)— (p'V 1 0
mc + +A
(r pZ)aro(pL PLtALw) —§ﬁ|pﬂ =c(p, - VL)ymCHOz (Pz—va)-
(45)

+(yme— pz) (pL)+c(pL Vop. _ _
These two last equations allow us to rewrite the second term

=c(V,qgA)-p. (377  in Eq.(43), so that finally:
We next average over the fast time scale, and this equation . v,| v 1 19 >
simplifies to S ﬁ—i_\ﬂ L|p= _m _an'q i

- (46)
(yme- p) (p )+c(p.- V. )p =c(V.qA)-p.
‘ B o . which is precisely the longitudinal equivalent of E42) that
38 we were looking for.

We then make use of Eq&29) and (36) to express the last We terminate this calculation by reintroducing in Egs.

term at lowest order in the form (42) and (46) two second order terms, namely,d/Jz in the
_ left term of both equations and<(1/2my)a/dz|gA, |2 in the
(V,qA)-p=—13V |gA,|% (39)  right term of Eq.(46), so that the averaged equation of mo-

tion of the electron in the laboratory frame finally writes:
We now establish an expression for the fast scale averaged

relativistic factor. Again using E(236), we can write dp 1 —
EZ—Z——VMAJZ- (47)
2_ 1 = %22 my
v =1+ —=[Ip.—gA.[*+pzl. (40) _ _ _ o
m=c This, together with Eq(41), constitutes the relativistic
_ _ generalization of the ponderomotive force. It has been de-
Using the equalityp,=p,+mc(y—7) and averaging over rived for a linearly polarized lasdisee Eq.(29)], but this
the fast time scale, we obtain derivation can be easily generalized for the case of an arbi-
trary polarization. We recover the main feature of the non-
relativistic case: the charged patrticle is expelled from the
regions of high field intensity in the direction of the gradient.
In the case of a linearly polarized wave, the direction of
With this expression we can define an averaged velocity ifpolarization plays no particular role, which contradicts the
the form v=p/ym. Putting together this definition and Eq. "esults of Ref[10].
(39), we can write Eq(38) as At this point, we can affirm that this expression is valid
provided thaf(i) the considered particle has a relatively slow

1 _
=1+ 2[|I0L|2+5§+|qAL|2]_ (41)
mc

U_Z g . 1 - speed in the direction, so that +v,/c>e and>g; (ii) €
1- < (9—+VJ_-VJ_ p,=——=V |gA, |2 (42 and o are of the same order; artii ) it is possible to rein-
1 2my troduce the two second order terms that we added to write

Eq. (47). Condition(i) seemsa priori the most stringent one.
"We will check the importance of these conditions with nu-
fherical simulations in Sec. IV.

We conclude this section by comparing our expression
with similar ones derived by other authors. Bauer, Mulser,
and Steeld5] used a Hamiltonian formalism to derive an
expression of the ponderomotive potential in the relativistic
regime. Their analysis supposed that it is possible to define
an oscillation center for the motion of the particle. They did
not specify the physical conditions under which such an as-

sumption is valid. If we writeA, =A, eko(z=0 4 ¢ ¢, then
|gA,|?=2|gA |2 We define the effective massneg
=m(1+2q?A,|¥m?c?)¥2[2], and Eq.(47) can be written

This constitutes the first order averaged equation of motion
in the transverse direction, the last term being precisely th
ponderomotive potential.

We now give a sketch of the demonstration of the equiva-
lent equation for the longitudinal direction. At first order, and
after multiplication byymc and averaging over the fast time
scale, Eq(32b) is written

[(vmc pz) +c(pl V) |p.

ym C. (43

{(wnc pz) +c(m \a
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dH C2 45
a =— %V Mg, (48)
— — Tao5d.. s

where yo=(1—v?/c?) "2 so thaty,mez=my in our nota- 3
tions. This equation is similar to Eqél1) and(12) of Ref. > : :
[5]. Startsev and McKinstrig8] used a covariant formalism, al L )
and assumed that the amplitude of the wave varies slowly : ; :
with respect to the phase. They supposed that these relative 150 o T, :
variation rates can be described by a single paranzeteat z (um) 155 4 Xz‘ﬁﬁf) 45

they did not relate to any physical quantity. They recovered

the expression for the relativistic ponderomotive foriteeir FIG. 1. Electron trajectory calculated by methdds, (2), and

Eg. (3.7] in terms of the proper time, which had already (3). Parameters ar@=0.3, A r=200 fs,wy=10 um, p,,=0.1, and

been obtained in a different way by Schmidt and Wil§dk  z;=150 um. With method<1) (ponderomotive forgeand(3) (first
order field$, the electron trajectorythe two curves in the upper

IV. TEST-PARTICLE SIMULATIONS part of the figur¢is along the field intensity gradient, whereas the
' zero order fieldgmethod(2)] confine the electron in the plane of
A. Description and test of the program polarization of the pulse.

In order to test the validity of the RPFEQ. (47)], we
designed a 3D test-particle simulation program. It computes=eEy/maw, so thata=0.85 corresponds to an intensity
the trajectory of individual electrons in the field of a laser =10 W cm™2 for a A\y=1 um wavelength. We also nor-
near focus, using either the Lorentz equation or the RPFmalize the electron momentum hoc. Our reference frame is
More precisely, the electron is moved by numerically solvingcentered at focus, so that the focal point coordinates are
the differential equations dr/dt=p/my and dp/dt  (0,0,0. The laser pulse is propagating in thez direction.
=f(r,p,t), using an adaptative Runge-Kutta methi@83]. We checked our program with simulations in the nonrel-
We used four different methods of calculation: the first oneativistic regime, where the validity of the ponderomotive
is based on the relativistic ponderomotive description, whileforce is well establishe24-2§. In the limit y— 1, Eq.(47)
the three others solve the equations of motion in the rapidlyeduces to the well-known equatidt). Cicchitelli, Hora,
varying fields, within three different approximations. More and Postld 18] showed that the higher order termsenvere
precisely, we proceed as follows. necessary to describe the electron motion in this regime cor-
(1) All quantities are time averaged quantities, in particu-rectly, and that the zero order fields lead to an erroneous
lar 7:;[Eq_ (41)], andf is the RPHEQ. (47)]. Then, as a anisotropic electron motion. Our numerical conditions are
zero order vector potential used to define the ponderomotives0.3 (=1.2x10" Wcm™2), A7=200fs, wo=10pum,
force, we take the expression of E@6a), which described  and p,0=0.1, wherep,, is the electron initial momentum.

as well, as shown at the end of Sec. Il. With these valuese=o=1.6x10 2.

(2) v is the usual Lorentz factor arfdthe Lorentz force, Figure 1 shows the trajectory of an electron initially at
whereE andB are the zero order fields used in RéB.and Xo=Yo=4 um and zo=150um as calculated by methods
[10], i.e., Egs.(169 and(160). (1), (2), and(3). Exactly as expected, the motion with the

(3) Like (2), but with the fields correct up to first order in zero order fielddmethod(2)] is restricted to the plane of
€ ando, i.e., Eqs.(16) and (27). polarization of the pulse, and is therefore nonisotropic. Con-

(4) Like (2), but with the fields correct up to all orders in versely, the inclusion of the first order correctigmsethod
e and order zero inr, that is Eq.(7). These fields will be (3)] leads to a very good agreement with the ponderomotive
referred to as the “exact” fields, though finite duration ef- force calculatiofmethod(1)].
fects are not included. We will see indeed that in all the cases The average ponderomotive motion of the electron takes
we study in this paper, the approximation on which they ardts source in two effects. First, the zero order motion of the
based is relevant. These fields are evaluated by numeric&lectron is simply the oscillation in thedirection due tcE, .
integration, and are very expensive in terms of computinglhis causes it to explore the gradientBfwhich causes on
time, which explains the relatively small number of simula-the average its drift and acceleration in thelirection. This
tions we have been able to perform. is precisely the usual explanation of the ponderomotive mo-

We will use these numbers to refer to these differention for purely electrostatic fields. The force is proportional
methods to calculate the electron motion. All our simulationsto V, E, and is therefore of ordet. Second, the field, is
consider a linearly polarized laser of wavelength=1 um,  almost in phase with the zero order velocity of the elec-
with the electric field in thex direction and the magnetic tron, as can be deduced from the set of equati@6s The
field in they direction. As in Refs[9] and[10], we study forcev,X B, has then a nonvanishing average which causes
electrons with an initial velocity in the direction of propaga- the drift in they direction. This force is again of orderdue
tion of the laser pulse, which has a finite duration and a sin¢o B,. Note that the fieldE, has almost no effect on the
squared shape, namelf{z— ct) =cos] #(t—z/c)/2A r]. We  electron motion in this case, as can be checked by suppress-
start the simulation at the moment when the leading edge dfig it artificially.
the pulse reaches the electron, and we compute the electron As cA 7>2w, here, we expect the first order correction in
motion up to the point where the laser pulse has overtaken itr to play no role. We checked this again by suppressing this
We normalize the laser amplitude in the usual way, term in the expression of the first order fields: we found no
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FIG. 2. Finalpy as a function of the initial position, of the FIG. 4. Kinetic energy of the scattered electron as a function of
electron. Parameters as in Fig. 1. The solid line corresponds tgg initial longitudinal position, withx,=Yy,=0. The parameters are
results obtained with the exact fielfimethod(4)], the open circles 55 in Figs. 1, 2, and 3. The electron motion is calculated with
are the result of the first order fields, and the dots correspond to thﬁlethod(4) (exact fields.
motion calculated with the ponderomotive fofeeethod(1)].

case, but as we wanted to study the electron motion in the
differences, which confirms that the finite pulse duration ef-highly relativistic regime of Hartemanet al,, where the va-
fects can be neglected here. We will come back to this poinlidity of the RPF is not obvious, we preferred to compute the
later in this section. full expression of the fields.

In order to compare more precisely the different calcula- Finally, Fig. 4 shows the final kinetic energy of the elec-
tions, in Fig. 2 we plot the finap,, and in Fig. 3 the final tron as a function of its initial longitudinal position, with
p.. as functions of the initial position along tixeaxis, with  x,=y,=0. Method(4) has been used here. One clearly sees
z,=150m. The solid line corresponds to the exact fieldsthe effect of the longitudinal ponderomotive force, which
[method(4)], the open circles to the first order fieldeethod  accelerates the electrons initially after focus and decelerates
(3)], and the dots to the RHAMethod(1)]. Note also that the the electrons initially before focus. This is due to the fact that
curvepy(yo) would be exactly the same as Fig. 2. All three the electron “sees” the ascendirigescendingpart of the
curves coincide very precisely in Fig. 2, but a clear disagreepulse at a position closer to focus than the descending one
ment appears in Fig. 3 between the RPF and the first ordéascendinyg The effect of diffraction of the laser wave then
fields. As finite pulse size effects are of no concern here, wenakes the ascendinidescendinggradient stronger than the
can affirm that metho@4) gives the exact electron motion in descendindascendingone.
this case. We conclude that the first order fields are insuffi- Let us now check the second point in the validity of the
cient to describe the longitudinal electron motion with goodRPF, that is the fact that should be of the order af for Eq.
accuracy. Higher order terms are needed, and then give @7) to be correct. Here we show the results of two simula-
very good agreement with the RPF. This gives us the answeions, one withe~ o and the other withr~ €. Figure 5 is
to one of the points we raised in discussing the validity ofa plot of the finalp, as a function of the initial positiox,

Eq. (47): it is possible to reintroduce the two second orderfor a case wherea=0.1, p,0=0.1, Zo=—100um, W,
terms we mentioned, which are precisely related to the lon=9.5um (e=1.7x10 2?), andA7=6ps (c=5.6x10"%).
gitudinal part of the motion. An expression of the fields up toThe agreement between the values calculated by the RPF
second order would probably have been sufficient in thigcircles and method4) (exact field$ is excellent. For the
electron atxy=0, it is not scattered by the ponderomotive
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FIG. 3. Finalp, as a function of the initial positiom, of the
electron, with the same parameters as in Fig. 1. The solid line FIG. 5. Finalp, as a function of the initial positiow, of the
corresponds to results obtained with the exact figidsthod(4)], electron. Parameters ase=0.1, A7=6 ps,wy=9.5um, p,,=0.1,
the open circles are the result of the first order fields, and the dotandz,= —100xm. The solid line corresponds to meth@l (exact
correspond to the motion calculated with the ponderomotive forcefields), while the circles refer to the RPF.
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0 100 200 300 400 500 600 FIG. 8. Final energies of the scattered electrons as a function of
Xo (kM) their initial transverse position. Parameters are3, A =400 fs,

Wo=10um, v,=0.2, and zo=—160um. The solid line corre-

sponds to the values obtained with the exact fighdsthod(4)], and

the circles to the values obtained with the RPF. The broken line on
' the right is the value as calculated with the model of R&D]

[model (2)].

FIG. 6. Finalp, as a function of the initial positiom, of the
electron. Parameters a@=0.7, A7=200fs, wo=300um, p,o
=0.1, andzy=100um. The solid line corresponds to the RPF
while the circles refer to metho@) (exact fields.

force as expected, but, as this initial position is unstable, the
finite machine precision causes the expulsion of the electron
when its motion is calculated with the exact fields. In the Let us now come back to the point we raised in Sec. I, and
same way, Fig. 6 shows the finpl as a function of the which motivated this paper, that is the disagreement between
initial position x, for the valuesa=0.7, p,=0.1, Zo  the RPF and the recent papers by Malka, Lefebvre, and
=100 um, wo=300 um (e=5.3x10"*), and A7=200  Miquel [10] and Hartemanret al. [9]. The results in these
fs (0=1.7x10"?). Here again, we see an excellent agree{wo papers share the fact that the laser intensity is relativis-
ment between the two calculations. This allows us to contic a>1, but Hartemanret al. also considered electrons
clude that the validity is in fact much wider than expected. \yhich are initially in the relativistic regimeys1) whereas

We now come back to the finite pulse duration effectshe aythors of Ref10] studied the acceleration of initially

Zhe fprewrc])_ua ;ﬁsufllts tagrge with OLtI'r egtmﬁf@q. ((210)31 0_; “slow” electrons (y=1). This second regime is closer to
7, Jor which the Tirst order correction 1o 1S needed. 10 a0 one e have just studied, so we will start with it.

f;()tg::rcviizewvihigy ?T]: :]r:?j Est|<m6%t?é Wnear?%fo,gmidlg fssl MU= 1 Ref. [10] the authors reported on an experiment where
0 K _T . yAT " free electrons have been accelerated in vacuum by a high-
The other parameters a@=0.3, zo=—40um, and p y 9
Dy L0 ’ z0 H H —_ 9 —2 — — .
=0.1. The simulation is made twice, once with the correc-IntenSIty (l._lol Wem 7, a=3), short @,T. 400 fs) “n. :
tions in o and another time without this correction. We can early polarized laser pulse. Th? e_Iectrons initial velocity is
see in Fig. 7 that the two simulations are in slight disagree@"ound 0'}:2' The focal spot waist isvo=10 um, so thate
ment, as expected. We conclude that our estimate was cof= 1-6X 10" “<1—vq,/c. This regime of parameters differs
rect and that the finite pulse size corrections are not needdéP™ the previous one only in the fact that the laser intensity
performed withcA 72w, so that method4) can be con- Simulation confirms this fact: Fig. 8 shows the final energy
sidered as giving thexact electron motion, as has been for an electron initially along the (y) axis, with an initial

B. RPF with initially slow electrons

stated above. longitudinal positionzy=— 160 «m and velocityvy,=0.2c.
The solid line corresponds to meth@d), while the circles
0.01 . . . correspond to the RPF. All four curves are exactly similar,

which means that the RPF is perfectly valid in this regime of
parameters, and therefore that the scattering is not limited to
the (E k) plane, as claimed by the authors of Rf0]. For
comparison, the result given by the zero order fields is shown
by the dashed line. It coincides with the two other curves on
the left(the electron initially in the plane of polarizatigrbut

is in complete disagreement for the electrons initially on the
y-z plane. The electron trajectories in this fully relativistic
case are similar to the one shown in Fig[11l]. The final
energy as a function o, for xo=y,=0 is slightly affected

by the choice of the wrong fields: methéd) gives a curve
v(z) very close to Fig. 3 of Ref.10].

FIG. 7. Finalp, as a function of the initial position, of the In order to improve the comparison between our simula-
electron. Parameters age=0.3, Ar=12 fs,w,=10um, p,,=0.1,  tions and an experiment, we simulated the trajectories of
andz,= — 40 um. Both curves correspond to trajectories calculated1000 electrons whose initial position is taken at the same
with the first order corrections ie, but with the first order correc- Zg= —200um, but whose transverse position is chosen ran-
tion in o (solid ling) or without it (circles. domly using a Gaussian distribution

0.008

0.006 | -

0.004

0.002,
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FIG. 9. Final transverse momentum of the electrons for the pa- FIG. 10. Ejection angle of the electrons vs their final Lorentz
rametersa=3, Ar=350fs, Wo=10 um, v,0=0.2, and z,= factor. The initial conditions are as in Fig. 9. The open circles
—200m. The 1000 electrons are initially distributed randomly correspond to the trajectories computed using the exact fields
using a Gaussian probability, wity=1 um (see text The trajec- [method(4)], while the solid line corresponds to theoretical formula
tories are computed with the exact fields, but the RPF gives almodPQ- The point on the right corresponds to an electron initially on

exactly the same points. axis.
1 Another interesting characteristic of the ponderomotive
P(X,y)= ef(x2+y2>/2r§' motion is the fact that the final energy of the particle and its
Trrg escape anglé (the angle between its trajectory and the laser

. o ~axig) are linked, or, equivalently, that the longitudinal and
with ro=1 um. All electrons have the same initial velocity transverse parts of the momentum are connected. It is usually

vo,=0.2c. The laser pulse has the same parameters as abovgssumed that the plane wave relation is valid, thatpis,
except for the duratiod 7=350 fs, which causes no impor- =p2/2 or

tant differences. Figure 9 shows the fipal of the electrons

as calculated by metho@). It is striking evidence of the y—1
isotropy of the scattering: the electrons are emitted exactly in cog 0) = Py
the same way in the direction (direction of polarizatioh

and in they direction. The RPF gives results in very good for an electron initially at rest. This relation may be demon-
agreement with Fig. 9. We checked this point numerically bystrated in two cases, either using the quasistatic approxima-
computing an estimate of the deviation from the ponderomotijon in which the fields are supposed to dependzoandt

tive motion, in the form only in the combinationr=t—z/c [7], or with the fields of

N e order zero ine [9], where it is a direct consequence of the
a(8p)=(8p%) —(dp)*, facts thatB,=E,/c and that the other fields are equal to

where the mean valué) refers to our 1000 trajectories. ZE70- Here, however, none of these two approximations are
. — . made, so that the relation we obtain is different from the
Here 6p is dp=(pex— Pree/Pex, Wherep is one of the

th ts of the final elect i above one, as can be seen in Fig. 10 which shows the ejec-
ree components ot the final electron momen le,(py_, tion angled as a function of the final electron Lorentz factor
or p,), pex Means the value obtained with the exact fields,

i ) _ v for the simulation with the exact fields and the RPF model
Prer Means the value obtained with the RPF, ang is  (open circlel and as calculated by the theoretical relation
V(Pex) for py, andpy, and pex .= V((Pex,.— Por)*)- As a
reference, we also give the values obtained in the nonrelativ- Nty 111+ Bo)

istic case:a=0.3, wo=10um, A7=350fs, vo,=0.1c, Z, g=tan Y= vo(1— Bo) (50)
=—200um, andry=1 um. All the values are reported in

Table I. We can see that the difference between the RPF ar(dolid ling), which is the equivalent of Eq49) for electrons
the exact electron motion has slightly increased in the caseith initial energy vy, and Bo=p,/ 7o [9]. The authors of
a=3, but the variouss(8p)’s are still at sufficiently low Ref. [10] supposed that relatiof60) was valid, and had
values to conclude on the validity of the RPF in this regime.some difficulties in explaining their experimental results.

(49

TABLE I. Numerical estimation of the difference between the motion calculated by the exact fields and
by the RPF. For the definition af, see the text. In all cased,r=350 fs.

a Wy (mm) Zy (nm) vyolc a(dpy) a(dpy) a(dp,)
0.3 10.0 —200 0.1 1.%10°3 9.7x10™°4 6.4x10°°
3.0 10.0 —200 0.2 2.%10°3 2.0x1073 6.6x10°4
10.0 10.0 —200 0.1 6.%<10°3 4.7x10°3 2.0x10°3
5.34 4.95 —15x10° 0.992 1.2x10°1 9.3x1072 5.6x10°1

a’}/o: 10
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FIG. 11. Evolution of they factor of the electron as a function FIG. 12. Evolution of they factor of the electron as a function
of its phase relative to the pulse envelope, the trajectory being consf its phase relative to the pulse envelope, the trajectory being com-
puted using the zero order fields. The parametersaar8.41, wy puted using the exact fieldmethod(4)]. The parameters are as in
=20um, A7=100 fs, yo=10, andzy=—7.6 mm. Fig. 11.

The correction to this formula that we demonstrate here may=10). Here again, the correct description of the fields
help, but as the experimental laser pulse is probably quitéhanges the theoretical prediction, but even more dramati-
different from the one we simulate, it is unlikely that a per- cally. We first notice a sign mistake in the zero order expres-
fect agreement can be reached in any case. sion of the fields used in Ref9] [Eq. (52) of Ref. [9]].

We can conclude that the experimental results reported ifndeed, the phase velocity of the light near focus is greater
Ref. [10] are puzzling, as they are in strong disagreementhanc [see the definition ofsg in Eq. (16)], whereas Ref.
with one important point of the simulations above, namely,[9]'s expression results in a phase velocity smaller thahs
the fact that the scattering is isotropic. The results are interexpected, the effect of this correction is a slight lowering of
esting in the sense that they represent the first experimenttie maximum energy of the electron, as can be seen in Fig.
observation of electrons accelerated by the ponderomotivél, which shows the evolution of thefactor of the electron
force in vacuum to such high energies. However, the auas a function of its phase in the pulse, for the same param-
thors’ claim that no electron was observed in the directioreters as Fig. 10 of Ref9]. The final Lorentz factor with the
perpendicular to the direction of polarization really needs tozero order fields is now~40 instead ofy~ 150. (We also
be explained. A more precise experiment would be of greagomputed the trajectory with the same erroneous fields as
interest in this context. Hartemannet al,, and recovered their Fig. 10The correct

We now go to more relativistic regimes. As we are ex-computationwith the fields correct to all orders i) is even
pecting the condition +v,/c> ¢ to be determinant in the more different, as can be seen in Fig. 12. The inclusion of the
validity of the RPF, we first increasewithout changing ,,.  longitudinal fields tends to reduce the final energy, which is
We have seen that the electrons are pushed forward by th@w y~ 13. The corresponding electron trajectory in e
longitudinal part of the RPF, which increases their longitu-plane is plotted in Fig. 13. We can see that the electron is
dinal velocity. As the laser intensity is raised, will reach ~ scattered slightly before focus, in a more violent way than in
high values sooner and sooner in the pulse profile, so that tHée ponderomotive case of Fig. 1. This is in agreement with
agreement between the exact motion and the RPF is likely tRef. [9]'s description, which insists on the fact that the
diminish. This is confirmed by a simulation at=10 (  electron-laser interaction terminates in about a wavelength.
=1.4x10°° W cm™?), with Wo=10 um, A7=350fs, vy, Note, however, that the electron quiver amplitude remains
=0.1c, zo=—200um, andr,=1 um. The scattering is still smaller than the laser beam waist. Therefore, the explanation

very close to perfect isotropy, but the numerical deviation

from the RPF has increased again, as can be seen in Table I. 100
The values of allo(p) are, however, under 1%, so that we
can conclude that the RPF is a valid description of the elec- 80
tron motion for electrons initially slow (2v,/c>e€) up to 60
extremely high values of the laser intensity. The very long T
computation time needed when using the exact fields has 2 ,,
prevented us from studying more precisely this limit. x
20
C. Interaction with highly relativistic electrons ok

We finally consider the case of initially highly relativistic

electrons. This corresponds to the regime studied by Harte- -4 -8 zZrim) -1 0

mannet al. [9]. Using a zero order description for the fields

and a 2D simulation program, these authors concluded that FiG. 13. Two-dimensional electron trajectory in tkez plane

the electrons are scattered with a very high endrgyto y
=250 for a=5.34, A7=800 fs, wy=4.95 um, and vy,

computed using the exact fields, with the same parameters as in Fig.
11.
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FIG. 14. Final electron Lorentz factor as a function of its initial

position along the laser propagation axis. The trajectory is com- FIG. 15. Final electron Lorentz factor as a function of its initial
puted using the exact fieldsiots and the RPF(solid line). The position along the laser propagation axis for the same parameters as

parameters ara=5.34,w,=4.95um, A r=350 fs, andy,= 10. Fig. 14, excepko= 10°% pm, andyo=0. Method(4) (exact fields
is used here.

of the behavior of the electron lies in the complex structure

of the electromagnetic field around the focus more than inn the initial rest frame of the electron, transforms tox’

the high value of the electron excursion around its mean_s, o5 m while the Doppler effect causes the laser

position. This dramatic modification of the electron motion 710 hM ' isel ,Ep B

due to the inclusion of the longitudinal fields can be under-Vavelength to be precise yo—)\ol[.yo(l—.z{qlc)]—IZ.O)\o

stood if we consider the fields in the initial rest frame of the ~ 20 #M i t_hls frame. Tbgrefore, if the initial p03|t.|0n_of

electron, that is the frame moving at speeg, with respect ~ the electron is changed by in the laboratory frame, it will

to the laboratory frame. If we note with a prime the quanti-S€€ the electromagnetic field of the pulse with the same

ties in this moving frame, thefEL|=|E,| and |E!|= yo(1 phase relative to the envelope, which explains that both tra-

—vo/c)|E: the longitudinal fields are unaffected, but the jéctories will be very similar. _ . .,
transverse field is reduced by the factgg(l—uv,/c) As in the previous case, we also simulated a “beam” of
~1/2y,. Consequently|E.|=¢|E,| and|E.|=(1/2y,)|E,- 1000 electrons with an initial position randomly chosen us-

The numerical values are=1/120 and 1/3,=1/20, so that ing a Gaussian distribution. Here,=1um and zp=

the longitudinal and transverse fields are about of the samt_ 15Rn|;r£’. with 7;0210 asl%bpv?r.]_We can Se? In Tablet | that
order in the initial rest frame of the electron. € IS no fonger valid In this régime of parameters, as

The importance of the correct description of the fields js-1gs. 13 and 14 sug_ges_ted. This does not mean, ho_we\(er,
also visible on the study of the final electron energy as hat the electron motion IS purely 2D, as can be seen in Fig.
function of its initial longitudinal position on the laser axis 6 which represents the final of the.electrons. Clearly_, the
before focus. We take as parametess=5.34, w, electrons with a nonzerg, have a final momentum with a _
—4.95um, A7=350 fs, andy,=10. These differ from the nonzerop, component. The escape angle of the electron is

; ; plotted in Fig. 17(circles, and we can see that it is very
iaég?festﬁ:]sstg;g Ig]; égooffisV?/[(g]n?:(% Itr;“tshgh?r?;;h;ﬁ;use ﬂjfferent from the theoretical value of formul®0) (solid
shortens the simulation time, which otherwise would have
made this study almost impossible on our computing ma-
chines. We checked that the results with the first order fields
were not affected in their main features by this change. This
certainly implies that the results obtained with the exact
fields[method(4)] will also be very similar.

Figure 14 shows the final electronfactor as a function
of its initial position on thez axis for 783 points randomly
chosen in the interval. The dots correspond to the trajectories
computed with the exact fieldsnethod(4)], while the solid
curve is the result of the RPfnethod(1)]. As for Fig. 4 in
the nonrelativistic regime, the effect of the longitudinal pon-
deromotive force is clearly visible, but the effect of the high 3
initial velocity of the electron is to add a kind of dispersion -8 -2 A 0 1 2 3
around a “mean curve” which would be very close to the
relativistic ponderomotive curve. Another interesting feature FIG. 16. Final transverse momentum of the electrons for the

of this curve is the fact that it has a pseudoperiod\of parameters of Fig. 14 and withy= — 15 mm. The 1000 electrons
=200um, as can be seen in Fig. 15, which is a zoom be-are initially distributed randomly using a Gaussian probability, with
tween zo=—15 and —14.75 mm, withx,=10"2 um and ro=1um (see text The trajectories are computed with the exact
Yo=0. This pseudoperiod im can be explained as follows: fields.
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FIG. 17. Ejection angle of the electrons vs their final Lorentz

factor. The initial conditions are as in Fig. 16. The open circles
correspond to the trajectories computed using the exact fields

[method(4)], while the solid line corresponds to theoretical formula
(50).

line). The “oscillations” that are visible on this figure can be
understood by looking at the two following figur€s8 and
19) which show the three final componentspofor electrons
initially on the x andy axes, with the other parameters as in
the previous figure. When initially along thxeaxis (that is in
the plane of polarization the electrons gain no momentum
in they direction, as expectedee Fig. 18)]. On the other
hand, the electrons initially in the-z plane gain a smalb,
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when their initial position approaches the laser propagation

axis [see Fig. 1€8)]. Note also thap, in this case has the
same oscillating shape @g andp, in Figs. 18a) and 1§c).
This increasing sensitivity to the initial position as the elec-

(@

107" 10°
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FIG. 19. Components of the final momentum as a function of
the initial electron position along the axis. The parameters are as
in Fig. 16.

tron approaches the laser axis is the consequence of the high
value of the quiver amplitude in this case, which prevents the
usual development around the oscillation center motion to be
valid. Note on the opposite that the cupgy,) [Fig. 19b)]

is very like in the RPF case. This comes from the fact that
the scattering is due here to tBe field, as seen before, so
that the high oscillating amplitude has only a small effect.

V. CONCLUSION

In this paper, we have studied theoretically and numeri-
cally the motion of electrons in the field of a high intensity
laser near focus. A precise demonstration of the relativistic
ponderomotive force has been given which makes apparent
its limit of validity. This demonstration is based on a com-
plete description of the electromagnetic field of a laser near
focus. We have given exact expressions of the fields for the
case of a Gaussian profile. These expressions contain as lim-
iting cases the usual zefparaxia) and first order expres-
sions in the small parameter= 1/kw,. We have also derived
the first-order corrections which arise when very short pulses
are considered, in which case the small parametev is
=N\g/CAT.

We have performed 3D computer simulations using a test-
particle computer code. For the pulses we studied, we have
shown that first order corrections in were not needed, so
that our code gives thexactelectron motion when we use it

FIG. 18. Components of the final momentum as a function ofWith the fields correct to all orders ia This has allowed us

the initial electron position along the axis. The parameters are as
in Fig. 16.

to give the condition of validity of the RPF, which reads 1
—v,/c>e: this is valid even at very high laser intensities,
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provided that the initial electron velocity in the direction of initial distance from the laser propagation axis appears. This
propagation of the pulse is not too high. The electron is therffect is greatest when the electron is in the plane of polar-
scattered in the direction of the intensity gradient, with enerization, but also persists out of this plane. Although it
gies of the order of several MeV in the case of very high-reaches high values, the electron quiver amplitude remains
intensity pulses. A precise relation exists between its escapgwer than the beam waist, so that the electron motion is 3D,
angle and its energy, which is, however, slightly differentand a 2D code is insufficient.
from the one which is usually assumggg. (50)]. This cor- It is therefore very unlikely that a single laser pulse be a
rection to this relation is of great interest in the context ofgood method to accelerate beams of electrons to very high
future experiments. A need of such experiments appears &hergies in vacuum. Other, more sophisticated, schemes will
the only previous onglQ] is clearly in disagreement with the probably have better results in this contgx®,30.
above results. We have shown, however, that the 2D theo- Finally, we note that special laser field configurations can
r?tical model on which this eXperiment is based is insuﬁi'|ead to a(quas} 2D motion. This can be the case, for in-
cient. stance, if cylindrical lenses are used, or if the focal spot is
In the regime where the RPF is no longer valid (1 highly elliptical. Computations in this last case are currently

—v,/c=e), the electron motion is much more complicated.in progress, and will be the object of a future publication.
First, the net energy gain is considerably lower than previ-

ously predicted9], due to the importance of the longitudinal

fields in the Lorentz transformed frame where the electron is
initially at rest. Second, no definite relation exists between
the electron escape angle and its energy in this regime. The authors wish to acknowledge interesting discussions
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